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Abstract—A forced convective heat transfer in a straight pipe rotating around a parallel axis with a large
angular velocity has been studied by assuming an effective secondary flow due to buoyancy. Heat-transfer
problems studied in this paper are commonly found when cooling electric generators or other rotating
machines. Flow and temperature ficlds are analyzed by dividing them into a flow core region and a thin
boundary layer along the wall. The analysis of a fully developed laminar flow under a constant wall tem-
perature gradient condition consists of two parts in this report. The first part is common in various problems
with secondary flows and the second part includes points for the present problem. The result shows that both
the ratio of resistance coefficients and that of Nusselt numbers to the values for the Poiseuille flow are
proportional to (Ra, . Re). (Ra,. Rayleigh number in the centrifugal field; Re. Reynolds number). The
correction coefficients due to the Coriolis effect are also given.

NOMENCLATURE Nu,,  Nusselt number for symmetrical
w, at the pipe axis; distributions = 48/11;
g, at the pipe axis; P, = (@*/v)(p/p);
radius of the pipe; Pr, Prandtl number;

s p, pressure;
=1 - (1/8,) [ hdE; 0,.Q,, heat flux in the fluid;
0 Q.. heat flux at the wall;

= — (0P/0z); dp = Q,/kt;
specific heat of fluid at constant qy = Qy/k;
pressure; G = Q,/kr;
dimensionless velocity of secondary Ra,, Rayleigh number in centrifugal field
flow in the core region; = Gr Pr;
=T,~-T; Re, Reynolds number = 2aW,/v;
Grashof number in centrifugal field r, radial coordinate in a cross section ;
= (aH)w?B1a*/v?; T, temperature;
= G/ta; T., mixed mean temperature;
= (T, — T,)/1a; T,, wall temperature ;
polynomial of /8 giving g in the U, radial component of velocity,
boundary layer; u = Ua/v;
= 2a%w/v; V, circumferential component of
heat conductivity of fluid ; velocity, v = Va/v;
Nusselt number W, axial component of velocity,

= 2aQ,, /KT, — T,):
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mean velocity. w,, = W,a/v;
axial coordinate, z = Z;a.

Greek symbols

B.
4.
8.

S

"y

o

Suffixes
0,

—_—

coefficient of volumetric expansion ;
deviation angle = — y';
dimensionless boundary-layer thick-
ness;
dimensionless
layer thickness;
= 51/5;
dimensionless radius of rotation of
the pipe axis;
=rja,
resistance coefficient

= (—0p/0Z)2a/3pW ;.
resistance coefficient for Poiseuille
distribution = 64/Re;
VISCOSity ;
= p/p;
=1 —-n;
density;
temperature gradient along the pipe
axis (constant);
dimensionless shearing stress in the
axial direction;
angular coordinate in a cross section
whose original line (¢ = 0) agrees
with the direction of secondary flow
in the core region;
angular coordinate in a cross section
whose original line (' = 0) passes
through the center of a cross section
and the axis of rotation;
angular velocity of the pipe.

thermal boundary-

value at the pipe wall (except for
Ao- Nug);

value in the core region;

mean value taken around the per-
iphery (y = — n ~ n) (except for
gm? Tm' Wm)’

value at £ = §;

value at £ = d7.

INTRODUCTION

THE COOLING of parts of rapidly rotating
machines becomes more and more important,
with the increase in working temperature of
heat engines or various machines and in the
capacity of electric generators or motors.
Coolants flowing through the passage inside a
rotating body are subjected to a centrifugal
field. The body force in a centrifugal field
caused by a high speed revolution gives stronger
effects on flow resistance and on heat-transfer
rate than in a natural gravitational field. The
problem discussed in the present paper is a
convective heat transfer to a laminar flow with
a strong secondary flow caused by the body
force in a straight pipe rotating about a parallel
axis. This problem. for example, is important for
cooling the conductors of armatures with in-
creased capacity and size.

In a rotating pipe. a secondary flow is present
due to the body force. Morris [1] analyzes
flow and temperature fields by a perturbation
method, assuming that a secondary flow is very
weak. and the applicable range of its results is
narrow. However, for practical uses. it is
necessary to know flow resistance and heat-
transfer rate under the strong effect of the
secondary flow, because in rotating machines
centrifugal fields are strong enough to generate
an intense secondary flow. Analyses on this
case have not been done so far.

A secondary flow increases the flow resistance
and also the heat-transfer coefficient. In the
present case, the secondary flow is caused by
body forces perpendicular to the direction of
the main flow. The secondary flow in a curved
pipe results from centrifugal force [2-7]. In a
heated straight pipe placed horizontally, the
secondary flow occurs due to buoyancy force in a
gravitational field. when the temperature dif-
ference between wall and fluid is finite [8-10].
When the secondary flow caused by various
kinds of body force gets strong enough in a
pipe flow. in laminar region velocity profiles
become quite different from that of the Poiseuille
flow, and the velocity and temperature distribu-
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tions have a steep gradient in the layer close to
the pipe wall and a gentle gradient in the
central core part [6] These characteristic
distributions due to a secondary flow show
that the effect of the secondary flow is pre-
dominant in almost the whole region of the
cross section, and the influences of viscosity
and heat conduction are mainly restricted in
a thin layer adjacent to the pipe wall. For a
theoretical study of the cases with the strong
secondary flow, the flow and temperature
fields may be divided into the boundary-layer
region near the pipe wall where the boundary-
layer approximation is available, and the flow
core region occupying almost the whole part of
the cross section [6—10].

The present paper gives an analysis of a
heat transfer to a fully developed laminar flow
under the condition of constant wall tempera-
ture gradient, following the way of analysis
developed and reported in the author’s papers
[6. 7] about heat transfer in curved pipes.
Fluids discussed here have Prandtl numbers
of about unity or more. A change in fluid
density is taken into account only in terms
concerning the body force, and changes in
physical properties with temperature are neg-
lected. In the first half of this paper, the part
of analysis common to problems with secondary
flows is discussed. Specific points in the present
problem to calculate flow resistances and
Nusselt numbers are discussed in the latter
part of the paper.

1. ANALYSIS BY THE BOUNDARY-LAYER
APPROXIMATION
1.1. Distortion of flow and temperature fields by
secondary flow

When a secondary flow caused by a body
force becomes strong in a pipe, the feature of
the flow changes considerably from that of a
symmetrical flow profile. Profiles of fully de-
veloped flow and temperature fields with the
secondary flow are shown in Fig. 1.

The stream lines of a weak secondary flow
are shown in Fig. 1(A.l) which are obtained by
4F
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FiG. . Flow and temperature fields under the effect of
secondary flow.

means of the perturbation method from the
Navier-Stokes equations [1, 2, 8]. The velocity
and temperature distributions obtained by the
perturbation method [1. 8] are shown in Fig.
1(A.11) and (A ii1) respectively. These distributions
have only a slight difference from the sym-
metrical distributions shown by the dashed
lines obtained by neglecting secondary flows.
Such a slight deviation of profiles is hardly found
in experiments.

The growth of a secondary flow to a sufficient
extent remarkably distorts velocity and tem-
perature distributions from the symmetrical
distributions as shown in Fig. 1(B.i1) and (B.ii1).
Such distribution profiles were observed in
laminar and turbulent flow fields and tempera-
ture fields with a secondary flow in curved
pipes [6. 7] and in a laminar flow in a heated
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horizontal pipe [9]. Influences of viscosity and
heat conduction are mainly limited in a thin
layer close to the pipe wall; therefore, this layer
is called a boundary layer in the sense that the
boundary-layer approximation is applicable
in this region. On the other hand. the central
part of the cross section is called a flow core
region, where shearing stress and heat flux
by secondary flows are predominant.

Let us consider a body force driving the
secondary flow in Fig. 1 which is denoted by
X and directs from left to right as shown in the
figure. In addition to the pressure gradient
along the pipe axis, there exists the pressure
distribution in a cross section perpendicular
to the axis due to the body force. The pressure
distribution in the core region of the cross
section is in balance with the body force.
Therefore. the secondary flow in the core
region is regarded to be such a uniform flow
asshown in Fig. 1(B.i). However, in theboundary-
layer force balance between the body force and
the pressure gradient in a cross section breaks.
so that the difference between these forces
causes a secondary flow from right to left
along the pipe wall as in Fig. 1(B). When the
secondary flow is set up, some of the work done
by the pressure gradient in the direction of
the pipe axis is transferred to the secondary
flow. and dissipated by viscous diffusion near
the wall. The boundary-layer thickness repre-
senting the region of viscous diffusion does
not change along the pipe axis in the fully
developed flow, where the pressure gradient
along the axis is constant, while it changes in
a cross section.

1.2. Fundamental equations

A system of co-ordinates is shown in Fig. 2.
Let v = 0 be in the direction of the secondary
flow in the flow core region; a, the pipe radius:
J, the boundary-layer thickness divided by
the pipe radius. Components of velocity in
r. ¢ and Z direction are denoted by U, V. W
respectively; p, pressure; p, density and v,
kinematic viscosity.

YASUO MORI and WATARU NAKAYAMA

Dimensionless quantities are defined as
follows;

n = r/a, u = Ua/v. v = Vayjv,

w = Wa/v. z = Z/a. P = (@*v¥)(p/p).
As the pressure gradient along the pipe axis

in a fully developed flow is constant, we put:

P _

— = — C (constant).
0z

a8

&

F1G. 2. System of co-ordinates.

When the temperature distribution is fully
developed under the condition of a constant
wall temperature gradient along the pipe axis.
the temperature gradient in the axial (z) direc-
tion is constant everywhere in a cross section.
Hence, temperature T is expressed in the
following form:

T = 1Z — G(r.4) (1

where 7 is the constant temperature gradient
along the pipe axis and G(r, ) is a function of r
and . Wall temperature T, is assumed to be
constant around the periphery of a cross
section, and written thus:

T, = 1Z. (2)
Therefore, the boundary condition of G at the

wall is G = 0 at r = a. Dimensionless tempera-
ture g is defined as

g =G/ta.
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Heat fluxes in the r and y directions and that
at the pipe wall are denoted by Q,, Q, and Q,, re-
spectively, and the dimensionless heat fluxes
are defined as follows:

qn = Qr/kt, qw = Qw/k‘f, dw = Qw/kT

where k is heat conductivity of fluid.

Shearing stresses in the axial direction exert-
ing on a small element of fluid are 7,, and 7,
as shown in Fig. 3. Balance of forces in the
z-direction is expressed by the following equa-
tion:

0 0ty

Shearing stresses are

_ow @

~
2%

F1G. 3. Shear stresses exerting on a small element of fluid.

From the energy balance of a small element of
fluid shown in Fig. 3, the following equation is
obtained :

7}
——(nq,) + ’1—‘11 = Prw. {6)
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Heat fluxes are expressed as folows:
0
q,= ~ 5% + Prug
” (7)
= ———+ Pry

where Pr = pc,v/k (Prandtl number).

1.3. The velocity and temperature distributions
in the core region

The suffix 1 is used to denote values in the

core region where stresses and heat fluxes due

to the secondary flow are predominant. From
equations (4) and (7),

Tzn = — Uwy, Tzw = —Uw, (8)

q, = Pruyg,, qy = Pruv,g,. 9)

Substituting equations (8) and (9) into equations
(3) and (6) respectively, we have

ow, ow,

ulTr’+ Ulw—c (10)
g, g, _

uy p +ulnal//—w1. (11)

So as to satisfy these equations and equation
(5), uq, vy, w, and g, are expressed as follows:

u; = D cosy
v, = — Dsiny
w —A+£ cos 1
1= Dr’ ’
= ’ C 2 2 A
g, =A +2D2r] cos ‘/’+5'1°05¢’ (13)

where A and A’ are the constants, and D expresses
the dimensionless velocity of the uniform second-
ary flow in the core region.

The profiles of velocity and temperature,
expressed by equations (12) and (13), well
approximate the real distributions obtained
by the experiments [3, 6, 7, 9]. The profiles of
w, by equation (12) and g, by equation (13)
are shown in Fig. 4.
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14. The velocity and temperature distributions

in the boundary layer

A distance from the pipe wall is denoted by
&= 1 — n). The assumptions are made that
8 < 1, and the variation of & with ¢ is quite
small. Hereafter. 8 is replaced by its peripheral
(¢ = — n ~ n) mean value §,, as the variation
of & with y neglected. The value of w, at { = ¢
is denoted by w,, and w in the boundary layer
joins with w,, as shown by dotted lines in
Fig. 4. Boundary conditions for w are

at &= w=20
Al Fo ow ow,
= W=w — = — ==
S 14 ac (qu
"|I ’Il ~\
|y
- |
1) 1
A X
i z'
4 :' ‘
/ .
/| A /| 4
| l i |‘L |
1 y 1 i 1

FiG. 4. w, and g,.

To satisfy these conditions. w is written as
follows:

y 2 5C s g2
W= wl‘,(2§ §2>+ 2= cos w(E - %) (14)

In the expression of the non-dimensional
temperature profile in the boundary layer, the
influence of Prandtl numbers has to be taken
into account. & and J; (dimensionless thermal
boundary-layer thickness) are not so clearly
defined from a temperature distribution profile
obtained by experiments. We denote the ratio
of 87 to 8 by {(= é4/6). and g, at £ =6 and
A1 by g,4 and g,,, respectively.

YASUO MORI and WATARU NAKAYAMA

In the case of 67 < &, g is expressed so as to
satisfy the following boundary conditions:

at ¢=0 ¢g=0

% _ _ %,

&
Satisfying these conditions, we write g in the
following form:

2(¢ & ¢ &2 &
g=gw{z(5*2 53)+3 2;{3}

C A ¢ 8
+ 5{5—2(1 -+ Bcosujz}(y - 3,) (15)

at {=06 g=4¢gu;

In the case of 67 = 8. at & = o4
_ cg _ ag;
g = G4 5_5 = - an
and
- 8¢
g glé-r —61 5%
N R A 52 53
+ bT{Dz(l - ()T) + 5005!,’/}(52 - 5; . (16)

The peripheral velocity component v of the
secondary flow in the boundary layer is de-
termined in the following way.

Consider the plane. A-B-0"-B'~-A’ in a cross
section as shown in Fig. 5. The flow rate flowing
through the plane, B-O’-B’ are equal to those

Fi1G S Sccondary flow
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through 4A-B and B-A'. This continuous condi-
tion of the secondary flow is expressed as

4

gvdﬁ = D(1 — §)siny. (17
Boundary conditions for v are

at £=0 v=20

at f=5 v=vh

In order to satisfy these conditions and equation
(17), v is written as follows:

v=—Dsin¢|:<—1—62+6)§ <—2;—9)§—2
12 3
+(- 2+ a)5]

1.5. Calculation of A, C and A’ in terms of 9,
Dand({

The mean velocity in a pipe, W,,, is given by
the equation

1 R a
Wm:WJ‘J‘W’ drdy.

-z0

(18)

(19)

Dividing the region of integration into the core
region and the boundary layer, and using
dimensionless quantities, we have from equation
(19)

x 1-8

. Re 1([ [ -
WME—?:;{J wyn dn dy

-n 0

k4

]

(20)

‘——a

l—édédw}

where Re = 2aW, /v (Reynolds number).
By substituting equations (12) and (14) into
equation (20), A is obtained as follows:

Re 1

A=71—§5m+%5§'

21
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From the relation of force balance of a fluid
element surrounded by a pipe wall and two
cross sections as shown in Fig. 6, the following
equation is obtained :

R a k.4

[frewes ) oo

-x0 -n

(22)

Use of dimensionless quantities leads from
equation (22) to

ow ow
C=- ‘[(%) dw_Z(éﬁ)o,,, (23)

where the suffix 0 denotes the value at the pipe
wall and m the average value over the periphery.

Pi
pe wall 7 z

Fi1G. 6. Portion of fluid under consideration of total force and
heat balance.

Substitution of equation (14) in equation (23)
gives
44 2Re 1
C=—"="+—— 24
iy S g+ wp v S

Considering the heat balance of the fluid
element shown in Fig. 6, the following equation
1s obtained ;

[ (3T
[ (), o0

JJ% WT)rdrdy.  (25)
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The non-dimensional form of equation (25) is

n

x 1
| dg _ _n
= (@_C)o dy = J.qu dndy =5 Re (26)

or by use of the mean value around the periphery
(Y = — n ~ m), we get

@ _RePr
aé Om—- 4 )

Since & and J; are assumed to be quite small
compared with unity, substitution of g given by
equations (15) and (16) into equation (27) leads
A’ for both cases d; 2 & by eliminating small
terms as follows:

_C(S,,,RePr_ Re
) 2D%5,

The unknown quantities are now reduced to
D, é,, and { included in equations (21), (24) and
(28). They are determined from the momentum
and energy integral equations of the boundary
layer. Among these integral equations, only
the equation of momentum in the peripheral
direction has the terms including the body
force. Therefore, the equations for the unknown
quantities, obtained from the equation of mo-
mentum in the axial direction and the energy
equation, have general applicability to problems
pertaining to different body forces.

27

A (28)

1.6. Boundary-layer momentum integral equation
in the axial direction
Equation (4) is substituted into equation (3)
and the boundary-layer approximation is made
on the basis of the following order estimation :

0 <1, p=1-¢=1,
(@/on) = — (0/05) ~ 03 "), u ~ O(D),
v ~ 0(D/d), ¥~ 0(1).
The boundary-layer equation becomes
*w

—“—+U‘“":C+a—§2

(29)
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By integrating this equation about ¢ from 0 to 8
and arranging it by use of the equation of
continuity (0u/0) = (dv/dyr), the following
boundary-layer momentum integral equation
is obtained :

4 &

ow 0 0
<5€)0 = W”'a—d’jvdé - wJ‘UW dé + Cé. (30)

[ [}
Substituting equations (14) and (18) into the
right-hand side of equation (30) and integrating
them, we have

(a_w) =E+ Fcosy
0

3 3h

where

2 13 ,
E —{(g _ E(S,,,)COS

317 \.,
+(§—Eém)sm d/+5,,,}C (32)

The mean value of (0w/d¢), around the periphery
¥ = — n ~ m) obtained from equation (31)
obviously satisfies equation (23). The terms
contributing to the mean value are grouped in
E as seen from equation (32), and they vary with
Y through cos’y and sin?y; however, the
variation of E by ¢ is so little in comparison
with Fcosy that E may be replaced by the
mean value C/2 [6].
Thus, we have

ow C
(5‘&)0 = 5 + Fcosy.

On the other hand, the gradient (éw/9¢&), is
also written from equation (14) that

660_ 165 DCOS

C 2 C
= i "l"(gﬂ - 1)5(3081&.

(34)

(35)
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By equating equations (34) and (35), we get the
following relation about D and 4,,

(1 - 36,) D2 + 105, = 20.  (36)

In order to increase the accuracy of the
boundary-layer approximation, D and 6, are
expanded in successive series by the particular
non-dimensional parameter. For example, in
the analysis of a laminar flow in a curved pipe
[6], it is expanded by —3 power series of Dean
number K[ = Re{,/a/R), R, radius of curvature
of pipe axis] as follows:

} 37

D=DK*+ D, +D;K ¥+ ...

5!’! = 6M1K_* + 6m2K—1 + ...
By substituting equation (37) into equation
(36) and equating the terms having the same
power of K, algebraical equations about D,,
Omy» D3, O3 . . . are obtained successively. How-
ever, in the following analysis only the first
approximation is analysed.

Equations concerning the first approximation

are shown below. From equation (21)

Re
From equation (24)
2Re
C= 7’“— (39)
From equation (36)
D*Z = 20. (40)

1.7. Energy integral equation of boundary layer
By substituting equation (7) into equation (6)
and applying the boundary-layer approxima-
tion, we have the following energy equation of
the boundary layer:
1 0% ag og
"}‘rézi a€+va—w—-w—-—0.

(1) In the case of 8; < 8. Equation (41) is
integrated with ¢ from 0 to § and the following

@1
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energy integral equation is obtained:
o9
Pr(@f) gldawjvdé aw’[gvdc
]
+ J‘w dé. 42)

0

Following the same procedure described in the
previous section, { is obtained from equation
42). As shown in equation (13}, g, has a non-
linear distribution about cos y. Therefore,
proceeding in the same way of calculation
about the flow field, g,, is assumed as

, C A
16=4 +W(l ~ 8% + b’(l — d)cosy
_{omRePr Re
~ 3 +2DOOS|[/. 43)

Equations (14), (15) and (18) are substituted

into the right-hand side of equation (42).

Elimination of small quantities yields

(Qg) = E + F'cosy 44)
0% Jo

where

, _RePrjf22 8
F== {(35 35c)°°s"’

13 8
+( 35C)sm :jr} 45)

{Ds,, Re Pr (g 8 )

F= 8
The convective term due to w in equation (42)
can be disregarded, since it is small compared
with the other terms.

As it is clear from equation (45), the mean
value of (0g/9f), in equation (44) satisfies
equation (27). As the variation of E’ with ¥ is
small compared with F'cosy, equation (44) is
expressed as

dg Re Pr ,
(66) 4 —— 4 F'cos .

(46)

@7
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On the other hand. from equation (15) we have

ag\ _ 2 _RePr+
%)y 15,90 4

When we equate equations (47) and (48), for
Pr > | we obtain the following relation ({ < 1)

RS B 2]

(2) In the case of 5+ = 4. In this case, integra-
tion of the boundary-layer equation should be
done by dividing the region into £ = 0 ~ & and
0 ~ d7. By calculating the integration of (42)
by use of g given by equation (16) we have

Re
{Dé,,

cosy. (48)

77 1

4P @)

RePr (DS, Re Pr?

ag\ _ m
(a_c)o' s T 3

~

o
L os

o4

02 |
0608 2 4 &

0 é‘&smfarcw

Pr

FiG. 7. ¢ vs. Pr.

From equation (16), the gradient (9g/9&),
is written in the same expression as equation
(48) when Pr is not much different from unity.
By equating equations (48) and (50), for Pr < 1
we obtain the relations (for { > 1) as

)

The ratio { calculated by equations (49) and (51)
is shown in Fig. 7.

5y
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1.8. Resistance coefficient and Nusselt numbers
Resistance coefficient A and Nusselt number
Nu are defined as

. op\ 2a

(e @
_ _2aQ,.

M= W, - T 3

where Q,,, is the mean heat flux at the wall
around the periphery of a cross section (¥
= —n~n), and T, is the mixed mean tem-
perature:

JJTWrdrdw (54)
“x0

Non-dimensional mixed mean temperature g,,
is written as
n 1
T, — T 2
Gm = ——— ¥ o~ J‘ﬁ[glwl'ld"dd’
ta n Re

{RePr 1 Re
= 3 5,,, + Z—D—Eé_m (55)

The resistance coefficient for the Poiseuille
velocity distribution is

o4

0= =

Re 56)

and Nusselt number for symmetrical tempera-

ture distribution and constant heat flux is
_ 48

TR

The ratio of A to 4, and that of Nu to Nu, are

expressed as follows by use of the dimensionless
quantities:

(57)

Nu

i_C 1 _ D (58)
ip 4Re 25, 220
Nu HRePr ﬂ l 1
Nu, 48 2g, 1205, 1 + [1/10f Pr)]
i1 D 1
(59)

T 12J207 1+ [1/10 Pr)]’
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2. HEAT TRANSFER IN A STRAIGHT PIPE
ROTATING ABOUT A PARALLEL AXIS

The particular relation between D and 9§,
for the present problem is given by the equations
of force balance in the r and ¥ direction. The
body force driving the secondary flow is caused
by density difference in the centrifugal field,
and the Coriolis force has a little influence on
the flow and temperature fields.

2.1. Fundamental equations
The pipe axis rotates about an axis with an
angular velocity w as shown in Fig. 8. The

1189

a —uav+vav+uv+1u
¥ Tom noy

a4
+ 7”0)2 sin ' (61)
where J is the parameter relating the Coriolis
effect J = 2a’w/v and H is the distance between
the pipe axis and the rotation axis.

The last terms in the right-hand side in
equations (60) and (61) express centrifugal
force caused by rotation.

When the fluid and the pipe wall are kept
at the same temperature, there is no body

F1G. 8. Co-ordinates of a rotating pipe.

angle measured from the line passing through
the center of a cross section and the axis of
rotation is denoted by y’'. Because of the
Coriolis’ force, ' does not necessarily agree
with ¢ which is measured from the direction
of the secondary flow in the core region. The
angle of deviation due to Coriolis force is
denoted by 4 = ¢ — '.

The expressions of acceleration in the n and
Y directions in a cross section are

force to drive a secondary flow, and we have
the following pressure distribution

4

a t r’
P, = v—szzn(cosw + ﬁ—) +P. (62

where P, is the pressure at the pipe axis. When
a temperature distribution exists in the cross
section, the secondary flow occurs due to
buoyancy, and P,comes to deviate from P,
given by equation (62). The deviation of pres-
sure from P, is newly denoted by P hereafter,
so that non-dimensional pressure is P, + P.
When w is very large, the fluid is subjected
to a strong centrifugal acceleration many times
larger than the gravitational one. The effect
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of body force is expressed in terms of density
change in the centrifugal field; therefore, the
following Grashoff number for the centrifugal
field is introduced:

_ (aH)»*Bra*
=

Gr

where f is the coefficient of volumetric expansion.
The equations of motion are written as

ou vou v? oP u
U—+ - — — — Jo=——+Viu-—
on ndy 7 on n?
2 ov
—-—+ G ! 63
ﬂ25¢+ rgcosy (63)
v vdv wuv 2
uan w Ju —(—azﬁ-Vv
2 Ou v .,
*zw——z—(;’gsmiﬁ (64)
where
e O 10 107
on* non  n*oy?

2.2. The core region

By use of equation (12) the force balance
equations in the core region are written from
equations (63) and (64) as

a—(;:—1=—JDsin(lV+A)+Grglcosw’ (65)
aPl ' : ’

— = —JDcos(Y' + A) — Grg,siny’. (66)
noy

When P, is eliminated from equations (65) and
(66).

941

cos Y now

+ sin w'%ir’l = 0. (67)

The dimensionless temperature g, given by
equation (13) satisfies equation (67) when the
effect of Coriolis’ force is small and y ~ y'.
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2.3. Boundary-layer momentum integral equation
in the peripheral direction
We have the boundary-layer equation from
equations (63) and (64) as follows:

opP
~ vt -Jv=-—+ Grgcosy’

3 (68)
ov ov oP 0%
—u55+vw+Ju=—w+a—éz
— Grgsiny'. (69)

Pressure P in the boundary layer is written as
]

P=P,;+ Jw*+ Jv+ Grgcosy)dé  (70)
¢

where P, ; is the value of P, at £ = 4.
The integration in the right-hand side of
equation (70) is small compared with P,,, thus

PxP,, (1)

From the integration of equation (69) with
¢ from 0 to 8, we obtain the boundary-layer
momentum integral equation in the peripheral
direction as

3 5 s
wy _, 0 _ 9 rge -
(5é)o_v18llljvdé awjv dé J!udé

0 0
)

- GrJ.g siny'dé.  (72)

0

dp,,
dy

-0

The first and second terms in the right-hand
side of equation (72) express incoming and
outgoing momentum flux from the control
volume of the boundary layer. They are due
to the variation of & along the periphery and
the third term expresses the effect of the Coriolis
force. As discussed for flows in a curved pipe
[6], & does not deviate remarkably from 4,
[6], and in the first approximation we may
disregard the first and second integrals of
equation (72). The effect of the Coriolis force
will be investigated in detail later.

For this reason, we take the mean of both
sides of equation (72) between Y =0 ~ n.
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The following equation thus obtained is the
fundamental relation:

é
av dPl . ’
(Fehm (%), G([ gy a0)

(73)
It is expected by referring to the author’s
analysis for flows in a curved pipe [6] that §,,
determined in this way is almost equal to that
calculated in the detailed analysis to the second
approximation.
From equation (66):

(d:w”)m = — Gr{g,ssiny’),,.

For simplicity, we write non-dimensional tem-
perature g as

(74)

g = g5 h(4/0) (75)
where h is the polynomial of £/5 in equation
(15) or (16).

Moreover, by putting
é

1 - a j hd& =b (76)
equation (73) is expressed as
(Z—‘;) = Grobgsint), ()
om

When ¢’ = y, substitution of equations (18)
and (43) into equation (77) yields
D 4
5—2 = b

where Ra, = Gr. Pr (Rayleigh number for the
centrifugal field). From equations (40) and (78),
D is obtained as

D= (256bC) (Ra, Re)t

where b is obtained by using equation (15) or (16).
ForPr>1( < 1),

D = 0930 (3( — 1)*(Ra,Re)t

Ra,Re 82 (78)

(79

(80)
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where { > 0:364 as shown in Fig. 7.
ForPr<i({ 2

= 1330(: -1+ ) (Ra,Re)t.  (81)

3¢

2 4. Resistance coefficients and Nusselt numbers

Substitution of equations (80) and (81) into
equations (58) and (59) gives 4/4, and Nu/Nu,
as follows:

for Pr > 1:
%_ 0-104 (3¢ — 1)* (Ra, Re)* (82)
0
Nu 0191
Nty Z (3 — 1)*(Ra, Re)
1
“Termocr;
for Pr < 1:

li_ 0149 (C -1+ lc) (Ra,Re}t  (84)

0

Nu _ 0273 1 ,

“Tyraecen;

In Fig. 9, the theoretical results given by
equations (83) and (85) are shown by the solid
straight lines. The curved line on the left in
Fig. 9 is drawn from Morris’ analytical results
[1] taking into account the terms of the second
order of magnitude, but it shows the rapid
divergence of the solution with increasing
Ra, Re.

2.5. The effect of Coriolis’ force

Effects of Coriolis’ force appear through the
angle of deviation 4 in the present analysis.
Considering that the line ¥ = 0 is the line of
symmetry in the flow field, we put it as follows
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in equation (66) to obtain 4: n ~ 1, dP,/dy =

0, y =0, y'= — A. The deviation angle is
given by
| D?
sin 4 J (86)

" {J208 + (Ra,Re/2Pr)’
When 4 is taken into account in obtaining the
mean value,

., 1 Re .
@1s50Y), =Zy—tCé,,,RePrcosA —Iﬁsmd.

@7

By putting cos 4 =~ 1 and sin 4 & 4 in equation
(87) and using equation (86), the equation
corresponding to equation (79) is written as

5 25znb 2
A NE AN
= 2—56I’-C-(Ra, Re).  (88)

The second term of the left-hand side in equation
(88) is presumed to be small.
Therefore, we put

D=D1+D2

where D, is that given by equation (79). Assum-
ing D, » D,, we have from equation (88)
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_ Snb i
IS L Pr/s) + 2]1DY

From equations (79) and (89), D is determined as
follows:

forPr>1

D, = (89)

D = 0930 (3{ — 1)* (Ra, Re)t

(3¢ — I)* J
[T PrJ5) + 21 Ra, Re)f} ©0)

{1 — 0486

forPr<1

D = 1330 (C - 14 —;—C)* (Ra, Re)*
aacE=1+0301F J

{1" 0993 {CPr/s)+2] (Ra,Re)*} - O

Therefore, when the effect of Coriolis’ force
cannot be disregarded, it is recommended to
multiply /4, and Nu/Nu, of equations (82-85)
by the correction coefficients which are cal-
culated from the terms closed in the brackets
in equations (90) and (91). The broken lines
shown in Fig. 9 are Nu/Nu, including the effect
of Coriolis’ force, which is expressed by non-
dimensional parameter J.

10
8|
2y I s e
4 PR —
Morris [1] _F;',;g;ﬁ =
2 Pr=0-1, i
108 4 10* 10 4

= Calculated curve
—=—~ Calculated with Coriolis effect

F1G. 9. Theoretical curves of Nu/Nu, vs. Ra, Re.
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It is clear from equation (66) that the increase
in 4 decreases the pressure gradient driving the
secondary flow, so that the dimensionless
velocity D of the secondary flow decreases as
shown in equations (90) and (91). The increase
in Coriolis’ force lessens flow resistance and
heat-transfer rate as shown in Fig. 9. When we
put the rotating velocity of the pipe axis
Ho = a, the correction coefficients in equations
(90) and (91) are proportional to w/x}. Keeping
o constant, we can conclude that the effect of
Coriolis’ force becomes large in a pipe with a
small radius of rotation.

CONCLUSIONS

Fully developed laminar flow and tempera-
ture fields in a straight pipe rotating about a
parallel axis are analysed under a constant wall
temperature gradient condition, and the follow-
ing conclusive results are obtained.

(1) In order to make the analytical results
available for practical use, flow and tempera-
ture fields can be analysed by assuming a
secondary flow and dividing the fields into a
core region, where the effect of the secondary
flow is predominant, and a boundary layer
along the wall. Since the momentum equation
in the direction of the pipe axis and the energy
equation do not explicitly contain the terms
of body force, the relations obtained from them
may generally be used between unknown quan-
tities in the analysis of convective heat transfer
in a pipe with a secondary flow generated by
various body forces.

(2) The specific relation for the present problem
is obtained from the momentum equation in
the circumferential direction which expresses
force balance between the body force in the
strong centrifugal field and viscous resistance
against the secondary flow at the pipe wall.
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(3) The resistance coefficient ratio A/iy (49 =
64/Re for Poisieulle profile) and the Nusselt
number ratio Nu/Nu, (Nu, = 48/11 for constant
temperature gradient) are obtained as the
functions of Pr and Ra, Re. They are propor-
tional to (Ra, Re)t in the region of large values
of Ra, Re,when the Coriolis’ effect is disregarded.

(4) It is shown that the effect of Coriolis’
force appears through the non-dimensional
parameter J(= 2a’w/v).

The correction coefficients are given by taking
into account this effect in the evaluation of
Aliy and Nu/Nu,. When the circumferential
velocity of the pipe axis is kept constant, the
decrease in a radius of rotation increases the
Coriolis’ effect, which lessens both the pressure
drop and the heat-transfer rate.

REFERENCES

1. W. D. Morris, Laminar convection in a heated vertical
tube rotating about a parallel axis, J. Fluid Mech. 10,
453 (1965).

2. W. R. DEAN, Note on the motion of fluid in a curved
pipe, Phil. Mag. 4, 208 (1927); Phil. Mag. S, 673 (1928).

3. M. ADLER, Stromung in gekriimmten rohren, Z. Angew.
Math. Mech. 14, 257 (1934).

4. S. N. BaRruA, On secondary flow in stationary curved
pipes, Q. Jl Mech. Appl. Maih. 16, 61 (1962).

5. H. Ito, Friction factors for turbulent flow in curved
pipes, J. Bas. Engng 81D, 123 (1959).

6. Y. Moriand W. NAKAYAMA, Study on forced convective
heat transfer in curved pipes (Ist report, laminar
region) Int. J. Heat Mass Transfer 8, 67 (1965).

7. Y. Morl and W. NAKAYAMA, Study on forced convec-
tive heat transfer in curved pipes (2nd report. turbulent
region), Int. J. Heat Mass Transfer 10, 37 (1967).

8. B. R. MoRTON, Laminar convection in uniformly
heated horizontal pipes at low Rayleigh numbers,
Q. Jl Mech. Appl. Math. 12, 410 (1959).

9. Y. Mort, K. FuTaGaMI, S. TOKUDA and M. NAKAMURA,
Forced convective heat transfer in uniformly heated
horizontal tubes, Ist report—experimental study on
the effect of buoyancy, Int. J. Heat Mass Transfer 9,
453 (1966).

10. Y. Mori and K. FutaGaMi, Forced convective heat
transfer in uniformly heated horizontal tubes, 2nd
report—theoretical study on the effect of buoyancy,
Trans. Japan. Soc. Mech. Engrs 32, 88 (1966).

Résamé— Le transport de chaleur par convection forcée dans un tuyau rectiligne tournant autour d’un
axe parall¢le avec und grande vitesses angulaire a été étudié en supposant un écoulement secondaire
effectif du aux forces d’Archiméde. Les problémes de transport de chaleur étudiés ici se posent habituelle-
ment lorsqu’on refroidit les générateurs électriques ou d’autres machines tournantes. Les champs d’écoule-
ment et de température sont analysés en les divisant en une région centrale et une couche limite mince le
long de la paroi. L’analyse d'un écoulement laminaire entiérement établi dans le cas d’un gradient de
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température pariétale constant consiste en deux parties. La premiére est une partie commune & de nombreux

problémes avec écoulements secondaires et la deuxiéme contient des points particuliers au probléme

actuel. Les résultats montrent que le rapport des coefficients de résistance et celui des nombres de Nusselt

aux valeurs de I’écoulement de Poiseuille sont proportionnels a (Ra, . Re)t; (Ra,: nombre de Rayleigh

pour le champ centrifuge, Re: nombre de Reynolds). On ‘donne également les coefficients de correction
dus & I'effet Coriolis.

Zusammenfassung—Es wurde der Wirmeiibergang bei erzwungener Konvektion in einem geraden Rohr,
das um eine parallele Achse mit grosser Winkelgeschwindigkeit rotiert unter der Annahme einer wirksamen
Zweitstrémung infolge des Auftriebs untersucht. Die hier betrachteten Wirmeiibergangsprobleme finden
sich haufig bei der Kiihlung elektrischer Generatoren oder anderer rotierender Maschinen. Strémungs-
und Temperaturfeld werden analysiert, indem man sie in eine Kernstrémung und eine diinne Grenzschicht
entlang der Wand unterteilt. Die Analyse der voll ausgebildeten Laminarstrémung bei konstantem
Gradienten der Wandtemperatur wird hier in zwei Teilen behandelt. Der erste Teil gibt die fiir verschiedene
Probleme mit Zweitstrdmung begrauchliche Betrachtung, der zweite Teil umfasst besonders Fragen des
gegenwiirtigen Problems. Das Ergebnis zeigt, dass das Verhiltnis sowohl der Widerstandskoeffizienten
als auch der Nusselt-Zahlen zum Wert der Poiseuille-Strémung proportional (Ra, . Re)* ist. (Ra,: Rayleigh-
Zahl im Zentrifugalfeld, Re: Reynolds-Zahl). Korrekturkoeffizienten zur Beriicksichtigung des Coriolis-
effektes sind angegeben.

Apnoranua—IIcciiefoBaH BHHYMICHHHN KOHBEKTHBHHHA Temioo6Mer B mnpaMoit TpyGe,
BpauanineiicA BOKPYr NapajieNbHoi ocH ¢ GONBUION YFiI0BOM CKOPOCTBIO B RONYIIEHAH
9(eKTUBHOTr0 BTODMYHOIO TeYeHUA BCIENCTBUE HNOABEMHBIX CHJ, O0YCJIOBIEHHHX IDaJHeH-
TOM MIOTHOCTH. IIpyM OXJIa)KEEHMM BJIEKTDOreHepaTOpoB M APYTHX BPAlAIOMKXCA MAINH
OOHYHO CTAIKUBAIOTCA C MpoGiieMaMy TemIo06MeHa, pACCMOTPEeHHRIMH B aTol crarbe. AHamIu-
BUPYIOTCS CKOPOCTHHIE M TeMIePATyPHEIE IOJA NyTeM pasfleleHusA UX Ha ALPO MOTOKA U HA
TOHKMI MOrpaHUYHHN NPHCTEHOLHBIH caolt. JIpe 4acTM 2TOro NOKJALa CONEPHKAT AHAJIU3
HOJIHOCTBI0 PASBUTOI0 JIAMMHAPHOTO MOTOKA B YCIOBUAX IOCTOAHHOrO TPAJMEHTA TeMIlepa-
TYpH creHKH. IlepBad 4acTh 06MAA ANA PASIMYHEX 3371a¥ C BTOPUYHBIMM TEYEHUH, & BTOPAA
4aCTh COJEPHUT 4acTHHE 3afauu. Peaynbprar mokassiBaeT, 4TO OTHOWIEHMA APYT K Apyry
Ko3QPUIMEHTOR CONpPOTHBIEHMA, a Tawwe 4ucen Hycceabra B ycmopuax Ilyaseitiesoro
TeYeHHA NpPONOPIHUOHANLHH (Rar- Re)t (Rar, uncno Penesa B ueHTpoGeskHoM mnole; Re,
ancso Peftuongsca). Jlaorca raxxe nonpaBoynke koagdunuentat Kopnomucosoro addexra.



