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Abstract--A forced convective heat transfer in a straight pipe rotating around a parallel axis with a large 
angular velocity has been studied by assuming an effective secondary flow due to buoyancy. Heat-transfer 
problems studied in this paper are commonly found when cooling electric generators or other rotating 
machines. Flow and temperature fields are analyzed by dividing them into a flow core region and a thin 
boundary layer along the wall. The analysis of a fully developed laminar flow under a constant wall tem- 
perature gradient condition consists of two parts in this report. The first part is common in various problems 
with secondary flows and the second part includes points for the present problem. The result shows that both 
the ratio of resistance coeflicients and that of Nusselt numbers to the values for the Poiseuille flow are 
proportional to (Ra,. Rd. (Ra,. Rayleigh number in the centrifugal held; Re. Reynolds number). The 

correction coeflicients due to the Coriolis effect are also given. 
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NOMENCLATURE 

w 1 at the pipe axis ; 
g r at the pipe axis ; 
radius of the pipe; 

- 1 - (l,&,)%hdt; 

- - (CSJ/fYz); 
specific heat of fluid at constant 
pressure; 
dimensionless velocity of secondary 
flow in the core region; 
=T,-T; - 

Grashof number in 
= (aH)to2j?ra4/v2 ; 
= G/Ta; 
= (T, - T,)/m ; 
polynomial of &j/S 
boundary layer ; 
= 2doJv; 

centrifugal field 

giving g in the 

heat conductivity of fluid ; 
Nusselt number 

= 2aQ,,lk(T,. - T,): 

Nusselt number for symmetrical 
distributions = 48/l 1; 

= (a21v2)@/p); 
Prandtl number ; 
pressure ; 
heat flux in the fluid; 
heat flux at the wall ; 
= Q,/kr ; 
= Q,/kr ; 
s Q,/kT; 
Rayleigh number in centrifugal field 
= Gr Pr; 
Reynolds number = 2aWJv; 
radial coordinate in a cross section; 
temperature ; 
mixed mean temperature ; 
wall temperature; 
radial component of velocity, 

u = Us/v; 
circumferential component of 
velocity, 0 = Va/v ; 
axial component of velocity, 

w c Walv; 
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KU mean velocity. w, = W,aiv; 

Z. axial coordinate. z = Zju. 

Greek symbols 
coefficient of volumetric expansion ; 
deviation angle = @ - $‘; 
dimensionless boundary-layer thick- 
ness ; 
dimensionless thermal boundary- 
layer thickness ; 
- 6,/6; 
dimensionless radius of rotation of 
the pipe axis; 
E rja; 

resistance coefficient 
= ( - apjazpq+p w; : 

resistance coefficient for Poiseuille 
distribution = 64/Re; 

viscosity ; 

= p/p; 
=_I-‘I; 
density ; 
temperature gradient along the pipe 
axis (constant); 
dimensionless shearing stress in the 
axial direction ; 
angular coordinate in a cross section 
whose original line (I/I = 0) agrees 
with the direction of secondary flow 
in the core region; 
angular coordinate in a cross section 
whose original line (+’ = 0) passes 
through the center of a cross section 
and the axis of rotation; 
angular velocity of the pipe. 

value at the pipe wall (except for 
E.,. Nu,); 
value in the core region; 
mean value taken around the per- 
iphery ($ = - rr 5 n) (except for 

g,,,. L. W,); 
value at t; = 6 ; 
value at 5 = 6,. 

INTRODUCTION 

THE COOLING of parts of rapidly rotating 
machines becomes more and more important, 
with the increase in working temperature of 
heat engines or various machines and in the 
capacity of electric generators or motors. 
Coolants flowing through the passage inside a 
rotating body are subjected to a centrifugal 
field. The body force in a centrifugal field 
caused by a high speed revolution gives stronger 
effects on flow resistance and on heat-transfer 
rate than in a natural gravitational held. The 
problem discussed in the present paper is a 
convective heat transfer to a laminar flow with 
a strong secondary flow caused by the body 
force in a straight pipe rotating about a parallel 
axis. This problem. for example, is important for 
cooling the conductors of armatures with in- 
creased capacity and size. 

In a rotating pipe. a secondary flow is present 
due to the body force. Morris [l] analyzes 
flow and temperature fields by a perturbation 
method, assuming that a secondary flow is very 
weak. and the applicable range of its results is 
narrow. However. for practical uses. it is 
necessary to know flow resistance and heat- 
transfer rate under the strong effect of the 
secondary flow. because in rotating machines 
centrifugal fields are strong enough to generate 
an intense secondary flow. Analyses on this 
case have not been done so far. 

A secondary flow increases the flow resistance 
and also the heat-transfer coefficient. In the 
present case. the secondary flow is caused by 
body forces perpendicular to the direction of 
the main flow. The secondary flow in a curved 
pipe results from centrifugal force [2-71. In a 
heated straight pipe placed horizontally, the 
secondary flow occurs due to buoyancy force in a 
gravitational held. when the temperature dif- 
ference between wall and fluid is finite [&lo]. 
When the secondary flow caused by various 
kinds of body force gets strong enough in a 
pipe flow. in laminar region velocity profiles 
become quite different from that of the Poiseuille 
flow, and the velocity and temperature distribu- 
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tions have a steep gradient in the layer close to 
the pipe wall and a gentle gradient in the 
central core part [63. These characteristic 
distributions due to a secondary flow show 
that the effect of the secondary flow is pre- 
dominant in almost the whole region of the 
cross section, and the influences of viscosity 
and heat conduction are mainly restricted in 
a thin layer adjacent to the pipe wall. For a 
theoretical study of the cases with the strong 
secondary flow, the flow and temperature 
fields may be divided into the boundary-layer 
region near the pipe wall where the boundary- 
layer approximation is available. and the flow 
core region occupying almost the whole part of 
the cross section [HO]. 

The present paper gives an analysis of a 
heat transfer to a fully developed laminar flow 
under the condition of constant wall tempera- 
ture gradient. following the way of analysis 
developed and reported in the author’s papers 
[6, 73 about heat transfer in curved pipes. 
Fluids discussed here have Prandtl numbers 
of about unity or more. A change in fluid 
density is taken into account only in terms 
concerning the body force, and changes in 
physical properties with temperature are neg- 
lected. In the first half of this paper, the part 
of analysis common to problems with secondary 
flows is discussed. Specific points in the present 
problem to calculate flow resistances and 
Nusselt numbers are discussed in the latter 
part of the paper. 

1. ANALYSIS BY THE BOUNDARY-LAYER 

APPROXIMATION 

1.1. Distortion of flow and temperature fields by 
secondary jlow 

When a secondary flow caused by a body 
force becomes strong in a pipe, the feature of 
the flow changes considerably from that of a 
symmetrical flow profile. Profiles of fully de- 
veloped flow and temperature fields with the 
secondary flow are shown in Fig. 1. 

The stream lines of a weak secondary flow 
are shown in Fig. l(A.i) which are obtained by 
3F 
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(A-iii) (B.iii) 

FIG. I. Flow and temperature fields under the effect of 
secondary flow. 

means of the perturbation method from the 
Navier-Stokes equations [l, 2, 83. The velocity 
and temperature distributions obtained by the 
perturbation method [l. 81 are shown in Fig. 
l(A.ii) and (A.iii) respectively. Thesedistributions 
have only a slight difference from the sym- 
metrical distributions shown by the dashed 
lines obtained by neglecting secondary flows. 
Such a slight deviation of profiles is hardly found 
in experiments. 

The growth of a secondary flow to a sufficient 
extent remarkably distorts velocity and tem- 
perature distributions from the symmetrical 
distributions as shown in Fig. l(B.ii) and @iii). 
Such distribution profiles were observed in 
laminar and turbulent flow fields and tempera- 
ture fields with a secondary flow in curved 
pipes [6. 71 and in a laminar flow in a heated 
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horizontal pipe [93. Influences of viscosity and 
heat conduction are mainly limited in a thin 
layer close to the pipe wall ; therefore, this layer 
is called a boundary layer in the sense that the 
boundary-layer approximation is applicable 
in this region. On the other hand, the central 
part of the cross section is called a flow core 
region, where shearing stress and heat flux 
by secondary flows are predominant. 

Let us consider a body force driving the 
secondary flow in Fig. 1 which is denoted by 
X and directs from left to right as shown in the 
figure. In addition to the pressure gradient 
along the pipe axis. there exists the pressure 
distribution in a cross section perpendicular 
to the axis due to the body force. The pressure 
distribution in the core region of the cross 
section is in balance with the body force. 
Therefore. the secondary flow in the core 
region is regarded to be such a uniform flow 
as shown in Fig. l(B.i). However, in the boundary- 
layer force balance between the body force and 
the pressure gradient in a cross section breaks. 
so that the difference between these forces 
causes a secondary flow from right to left 
along the pipe wall as in Fig. l(B). When the 
secondary flow is set up. some of the work done 
by the pressure gradient in the direction of 
the pipe axis is transferred to the secondary 
flow. and dissipated by viscous diffusion near 
the wall. The boundary-layer thickness repre- 
senting the region of viscous diffusion does 
not change along the pipe axis in the fully 
developed flow, where the pressure gradient 
along the axis is constant, while it changes in 
a cross section. 

1.2. Fundamental equations 
A system of coordinates is shown in Fig. 2. 

Let II/ = 0 be in the direction of the secondary 
flow in the flow core region ; a, the pipe radius : 
6, the boundary-layer thickness divided by 
the pipe radius. Components of velocity in 
r. $ and 2 direction are denoted by CJ. V. W 
respectively; p, pressure; p, density and v, 
kinematic viscosity. 

Dimensionless quantities are defined as 
follows; 

rj = rla, u = Us/v. 1: = Vajv. 

w = Walv. z = Zfa. P = (a*,/v*)(plp). 

As the pressure gradient along the pipe axis 
in a fully developed flow is constant, we put : 

dP 
-_= 
az 

- C (constant). 

--------- 

I*_-__ 

--------- 

FIG. 2. System of coordinates 

When the temperature distribution is fully 
developed under the condition of a constant 
wall temperature gradient along the pipe axis, 
the temperature gradient in the axial (z) direc- 
tion is constant everywhere in a cross section. 
Hence, temperature T is expressed in the 
following form : 

T = rZ - G(r.$) (1) 

where r is the constant temperature gradient 
along the pipe axis and G(r, $) is a function of r 
and I(/. Wall temperature T, is assumed to be 
constant around the periphery of a cross 
section, and written thus : 

T, = 7Z. (2) 

Therefore, the boundary condition of G at the 
wall is G = 0 at r = a. Dimensionless tempera- 
ture g is defined as 

g = Gjra. 
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Heat fluxes in the I and rj directions and that 
at the pipe wall are denoted by Q, QS and Q, re- 
spectively, and the dimensionless heat fluxes 
are defined as follows: 

q,, = Qrlk qe = Q,lk qw = Qwlkz 
where k is heat conductivity of fluid. 

Shearing stresses in the axial direction exert- 
ing on a small element of fluid are r,,, and r,* 
as shown in Fig. 3. Balance of forces in the 
z-direction is expressed by the following equa- 
tion : 

Shearing stresses are 

aW t zq = - all 
- uw 

aW z z#=g&-m' 

The equation of continuity is 

&(,u) + $ = 0. 

(3) 

I 

(4) 

(5) 

FIG. 3. Shear stresses exerting on a small element of fluid. 

From the energy balance of a small element of 
fluid shown in Fig. 3, the following equation is 
obtained : 

(6) 

Heat fluxes are expressed as follows : 

q4= --+PPrug 
atl 

q*= -*+PrVg 
?a* I 

(7) 

where Pr = pc,v/k (Prandtl number). 

1.3. The velocity and temperature distributions 
in the core region 

The suffix 1 is used to denote values in the 
core region where stresses and heat fluxes due 
to the secondary flow are predominant. From 
equations (4) and (7), 

r Z9 = - UlWl, r Z$ = - UlWl (8) 

4s = Pr Wl~ 4# = Prw1. (9) 

Substituting equations (8) and (9) into equations 
(3) and (6) respectively, we have 

aW, aW, u,--+u,-=c 
atl ?a* (10) 

ah ah 
UC&+ v1--@= Wl. (11) 

So as to satisfy these equations and equation 
(5), ul, ul, w1 and gl are expressed as follows: 

ul = Dcos$ 

u1 = - Dsin$ 

C 
91 = A’ + 202v ‘cos2$ + +os* (13) 

where A and A’ are the constants, and D expresses 
the dimensionless velocity of the uniform second- 
ary flow in the core region. 

The profiles of velocity and temperature, 
expressed by equations (12) and (13), well 
approximate the real distributions obtained 
by the experiments [3, 6, 7, 91. The profiles of 
w 1 by equation (12) and g1 by equation (13) 
are shown in Fig. 4. 
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The velocity and temperature distributions. In the case of Sr < 6, g is expressed so as to 
in the boundary layer satisfy the following boundary conditions : 

distance from the pipe wall is denoted by 
1 - q). The assumptions are made that 

at 5 = 0 y=o 

1. and the variation of 6 with II/ is quite %I, 
small. Hereafter. 6 is replaced by its peripheral 

at c=6 g=gla !L ---&-. 
at 

(l/j = - n - IL) mean value 6, as the variation 
of 6 with I(/ neglected. The value of w, at r = 6 Satisfying these conditions, we write g in the 

is denoted by wlb. and w in the boundary layer following form : 

joins with wld as shown by dotted lines in 
Fig. 4. Boundary conditions for w are > 

t2 _ 2 5’ 
+3$ T;” 

at <=O w=o 

at 5x8 \v = w * 6 
2w aw, _ - _--_ 
ag- dfj’ In the case of br 2 6. at < = d, 

dg +, 

and 

The peripheral velocity component t’ of the 
secondary flow in the boundary layer is de- 
termined in the following way. 

I-‘IG 4 H’, and y,. Consider the plane. A-EGO’ -B’-A’ in a cross 
section as shown in Fig. 5. The flow rate flowing 
through the plane. Ba’-B’ are equal to those 

To satisfy these conditions. w is written as 
follows: 

WC w,,(2~-~)+~cos*(~-;). (14) 

In the expression of the nondimensional 
temperature profile in the boundary layer, the 
influence of Prandtl numbers has to be taken 
into account. 6 and 6, (dimensionless thermal 
boundary-layer thickness) are not so clearly 
defined from a temperature distribution profile 
obtained by experiments. We denote the ratio 
of 6r to 6 by <( = 6,/6), and g, at 5 = S and 
fir by gla and gtdT respectively. FIG, 1; Sccondar) flos+ 
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through A-B and &A’. This continuous condi- From the relation of force balance of a fluid 
tion of the secondary flow is expressed as element surrounded by a pipe wall and two 

d cross sections as shown in Fig. 6, the following 

d 
vd< = D(1 - @sin+. (17) equation is obtained : 

Boundary conditions for u are 

at <=O v=o 

at <=S V = or, av 0 - = 
at 

. 

ad+. (22) 

Use of dimensionless quantities leads from 
equation (22) to 

In order to satisfy these conditions and equation 
(17) v is written as follows: C=; j($)od$=2($)om (23) 

v= -lIsin$[(-:+6):+(:-9); -’ 
where the sufftx 0 denotes the value at the pipe 

+(-;+4)$]. (18) 

wall and m the average value over the periphery. 

1.5. Calculation of A, C and A’ in term of 6, 
D and I; 

The mean velocity in a pipe, W,, is given by 
the equation 

II a 

w, = 1 
71a2 I I Wr drd+. (1% 

-no 

Dividing the region of integration into the core 
region and the boundary layer, and using 

FIG. 6. Portion of fluid under consideration of total fora and 
heat balance. 

dimensionless quantities, we have from equation 

(19) 
Substitution of equation (14) in equation (23) 
gives 

n 1-d 

Re 1 1 
w,=--=- 2 II {II 

wrtl dtl dlL 
C+L’“’ 

m 6 m l-$5 +$82’ 
(24) 

m m 
-II 0 

n d Considering the heat balance of the fluid . _ 

+ II ~(1 - r) d5 d$ (20) 
element shown in Fig. 6, the following equation 
is obtained ; 

-no _ ,. 

where Re = 2aWJv (Reynolds number). ad+ 
By substituting equations (12) and (14) into _ D 

equation (20), A is obtained as follows: II 0 

A=!% 1 
(21) 

= PC, A(WT)rdrd$. (25) 

2 1 -@,+is;’ 
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The nondimensiona form of equation (25) is 

or by use of the mean value around the periphery 

(II/ = - K - a), we get 

&J 

0 

Re Pr 
ig Om=4’ (27) 

Since 6 and 6, are assumed to be quite smafl 
compared with unity, substitution of g given by 
equations (15) and (16) into equation (27) leads 
A’ for both eases BT 3 6 by eliminating small 
terms as follows : 

By integrating this equation about c from 0 to S 
and arranging it by use of the equation of 
continuity (&/LQ = (&~/a$), the following 
boundary-layer momentum integral equation 
is obtained : 

Substituting equations (14) and (18) into the 
right-hand side of equation (30) and integrating 
them, we have 

= E + Fcost) (3i) 

where 
A, = G4$ePr Re 

8 -2026,‘ (28’ E =I(; - $+QS'(~ 

The unknown quantities are now reduced to 
D, 8, and C included in equations (21), (24) and 
(28). They are determined from the momentum 
and energy integral equations of the boundary 
layer. Among these integral equations, only 
the equation of momentum in the peripheral 
direction has the terms including the body 
force. Therefore, the equations for the unknown 
quantities, obtained from the equation of mo- 
mentum in the axial direction and the energy 
equation, have general applicability to problems 
pertaining to different body forces. 

Equation (4) is substituted into equation (3) 
and the boundary-layer approximation is made 
on the basis of the following order estimation : 

661, ~=l-<%l. 

(a/@) = - (VW - OW I), u - o(D), 

v - O(W), IL - O(1). 

The boundary-layer equation becomes 

aw dw d2W 
-uUS+u-&=C+-@-. 129) 

+(; - ++2~ + s,)C (32) 

F=~(~-~~~)~. (33) 

The mean value of @w/a<), around the periphery 

(@ = - R y n) obtained from equation (31) 
obviously satisfies equation (23). The terms 
contributing to the mean value are grouped in 
E as seen from equation (32), and they vary with 
+ through cos2~ and sin’ 9; however, the 
variation of E by I,$ is so little in comparison 
with F cosll/ that E may be replaced by the 
mean value C/2 161. 

Thus, we have 

(34) 

On the other hand, the gradient @w/ZQo is 
also written from equation (14) that 



FORCED CONVECTIVE HEAT TRANSFER 1187 

By equating equations (34) and (35), we get the 
following relation about D and 6, 

(1 - @,) 0%; + 106, = 20. (36) 

In order to increase the accuracy of the 
boundary-layer approximation, D and S, are 
expanded in successive series by the particular 
nondimensional parameter. For example, in 
the analysis of a laminar flow in a curved pipe 
[6], it is expanded by -f power series of Dean 
number K[= ~~~~/~~ R, radius of curvature 
of pipe axis] as follows : 

D=D,K*+D,+D,K-++... -j 

6, = f!i,Jc-* + i&&-’ + . . . . _I (37) 

By substituting equation (37) into equation 
(36) and equating the terms having the same 
power of K, algebraical equations about D,. 

&I, D,, &,z.. . are obtained successively. How- 
ever, in the following analysis only the first 
approximation is analysed. 

Equations concerning the first approximation 
are shown below. From equation (21) 

From equation (24) 

+f. 
n 

(38) 

(39) 

From equation (36) 

02CS2 = 20. m (40) 

1.7. Energy integral equation o~b~ary Zayer 
By substituting equation (7) into equation (6) 

and applying the boundary-layer approxima- 
tion, we have the following energy equation of 
the boundary layer: 

1 a2g ag ag 
--2 Pray 

-uplaJI-w=o. (41) 

(1) in the case of 8= < 6. Equation (41) is 
integrated with 5 from 0 to 6 and the following 

energy integral equation is obtained: 

d 

(42) 
0 

Following the same procedure described in the 
previous section, I is obtained from equation 
(42). As shown in equation (13), g1 has a non- 
linear dist~bution about cos $. Therefore, 
proceeding in the same way of calculation 
about the flow field, gIa is assumed as 

gla = A’ + 4D2 C(l - S)2 + $1 - 6)cosJI 

x @,RePr + Re 
8 pw 

Equations (14), (15) and (18) are substituted 
into the right-hand side of equation (42). 
El~ination of small quantities yields 

aQ 0 %O 
=E’+F’ms1,6 

where 

(45) 

F’ _ [DS,Re Pr2 22 8 

8 ( ) 
---. 
35 35{ 

(461 

The convective term due to kin equation (42) 
can be disregarded, since it is small compared 
with the other terms. 

As it is clear from equation (49, the mean 
value of (LJg/a{)o in equation (44) satisfies 
equation (27). As the variation of E’ with I,$ is 
small compared with F’cosJ/, equation (44) is 
expressed as 

(47) 
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On the other hand. from equation (15) we have 

&l 2 0 RePr Re 
2 o=66,91a=-p- -cosII/. 

CD& 
(48) 

When we equate equations (47) and (48), for 
Pr 2 1 we obtain the following relation ([ < 1) 
as 

I=$[l+~J(l+&+J] (49) 

(2) In the caSe of& > 6. In this case, integra- 
tion of the boundary-layer equation should be 
done by dividing the region into 5 = 0 ‘v 6 and 
6 + 6,. By calculating the integration of (42) 
by use of g given by equation (16) we have 

ag 0 Re Pr 

2 o=4+ 

CDS, Re Pr2 

8 

x ( l-G++ costi. > (W 

FIG. 7. i vs. Pr. 

and Nusselt number for symmetrical tempera- 
ture distribution and constant heat flux is 

Nu, = ;. 

From equation (16) the gradient @g/a<), 
is written in the same expression as equation 
(48) when Pr is not much different from unity. 
By equating equations (48) and (50), for Pr < 1 
we obtain the relations (for [ > 1) as 

+;[2+ J($- I)]. (51) 

The ratio [ calculated by equations (49) and (5 1) 
is shown in Fig. 7. 

1.8. Resistance coeficient and Nusselt numbers 
Resistance coefficient 1 and Nusselt number 

Nu are defined as 

j. = (52) 

hQ,vm 
N” = k(T, - T,) 

(53) 

where Q, is the mean heat flux at the wall 
around the periphery of a cross section ($ 
= - K m it). and T, is the mixed mean tem- 
perature : 

1 
T, = - 

31a2 W, 
TWrdrdr//. (54) 

-x0 

Nondimensional mixed mean temperature gm 
is written as 

n 1 

The resistance coefficient for the Poiseuille 
velocity distribution is 

The ratio of I to 1, and that of Nu to Nuo are 
expressed as follows by use of the dimensionless 
quantities: 

A c 1 
_- . 

*0 -- 4Re= x 

Nu 11 RePr 11 1 1 
-= --=-_ 
Nuo 48 29, 12 YS, 1 + [l/(lOY Pr)] 

11 D 1 =-- 
12J20 C 1 + [l/(lOCPr)]’ 

(58) 

(59) 
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2. HEAT TRANSFER IN A STRAIGHT PIPE 

ROTATING AROUT A PARALLEL AXIS a cc . * =uav+uav+!!!+,u 

atl tlati tl 
The particular relation between D and 6, 

for the present problem is given by the equations 
a4 

+ --$Msirl~’ (61) 
of force balance in the r and JI direction. The 
body force driving the secondary flow is caused where J is the parameter relating the Coriolis 
by density difference in the centrifugal field, effect J = 2a20/v and H is the distance between 
and the Coriolis force has a little influence on the pipe axis and the rotation axis. 
the flow and temperature fields. The last terms in the right-hand side in 

equations (60) and (61) express centrifugal 
2.1. Fundamental equations force caused by rotation. 

The pipe axis rotates about an axis with an When the fluid and the pipe wall are kept 
angular velocity w as shown in Fig. 8. The at the same temperature, there is no body 

FIG. 8. Comdinam of a rotating pipe. 

angle measured from the line passing through 
the center of a cross section and the axis of 
rotation is denoted by I/I’. Because of the 
Coriolis’ force, I/I’ does not necessarily agree 
with $ which is measured from the direction 
of the secondary flow in the core region. The 
angle of deviation due to Coriolis force is 
denoted by A = $ - JI’. 

The expressions of acceleration in the q and 
JI directions in a cross section are 

force to drive a secondary flow, and we have 
the following pressure distribution 

where P, is the pressure at the pipe axis. When 
a temperature distribution exists in the cross 
section, the secondary flow occurs due to 
buoyancy, and PO comes to deviate from P,, 
given by equation (62). The deviation of pres- 
sure from PO is newly denoted by P hereafter, 
so that non-dimensional pressure is P, + P. 

When o is very large, the fluid is subjected 
to a strong centrifugal acceleration many times 
larger than the gravitational one. The effect 
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of body force is expressed in terms of density 2.3. Boundary-layer momentum integral equation 
change in the centrifugal field; therefore, the in the peripheral direction 
following Crashoff number for the centrifugal We have the boundary-layer equation from 
field is introduced : equations (63) and (64) as follows: 

where/? is the coehicient of volumetric expansion. 
The equations of motion are written as 

- vz 
ap 

-J~=~+Grgcxs1(1 (68) 

a0 av ap a% 
-u-+v-+Ju= --+- 

a< a* a* at;2 

- Gr g sin IJ’. (69) 

Pressure P in the boundary layer is written as 

P=Pld+ j(v2+Jv+Grgcos@)d5 (70) 
t 

au v au ~2 C?P u-+__---_ Jv= _--_+3,-~ 

h tlw tt atl rt’ 

(63) 

u!?!+:!!!+!!t+ Ju= --++2v 
att ttw tl qw 

2 au +T_-L 
0ti ~2 

- GrgsinII/’ 

where 

,2,dz+ld+La2 
a+ ttatl +a*z’ 

2.2. The core region 

(64) 

By use of equation (12) the force balance 
equations in the core region are written from 
equations (63) and (64) as 

ap,_ 
att - - JDsin(#‘+d)+ Grg,cos+’ (65) 

ap,_ 
tld* 

- - JD cos (II/’ + A) - Gr g1 sin II/‘. (66) 

When P, is eliminated from equations (65) and 
(66). 

ah ag, cos$‘- + sin $‘- = 0. 
tta+ att 

(67) 

The dimensionless temperature g1 given by 
equation (13) satisfies equation (67) when the 
effect of Coriolis’ force is small and JI z II/‘. 

where PI8 is the value of P, at r = 6. 
The integration in the right-hand side of 

equation (70) is small compared with P,, thus 

P z PI& (71) 

From the integration of equation (69) with 
< from 0 to 6, we obtain the boundary-layer 
momentum integral equation in the peripheral 
direction as 

($). = yl$j’di - $/v2dt - Jj,,, 
0 

gsinl(l’dt. (72) 

0 

The first and second terms in the right-hand 
side of equation (72) express incoming and 
outgoing momentum flux from the control 
volume of the boundary layer. They are due 
to the variation of 6 along the periphery and 
the third term expresses the effect of the Coriolis 
force. As discussed for flows in a curved pipe 
[6], 6 does not deviate remarkably from 6, 
[6], and in the first approximation we may 
disregard the first and second integrals of 
equation (72). The effect of the Coriolis force 
will be investigated in detail later. 

For this reason, we take the mean of both 
sides of equation (72) between $ = 0 - rr. 



The following equation thus obtained is the 
fundamental relation : 

It is expected by referring to the author’s 
analysis for flows in a curved pipe [6] that 6, 
determined in this way is almost equal to that 
calculated in the detailed analysis to the second 
approximation. 

From equation (66): 

= - Gr@,,sin $‘),,,. (74) 

For simplicity, we write nondimensional tem- 
perature g as 

9 = S1a w/4 (75) 

where h is the polynomial of t/S in equation 
(15) or (16). 

Moreover, by putting 

d 

l-f hdt=b 

d 

(76) 
m 

equation (73) is expressed as 

= Gr S&g 1 d sin I)‘),,,. (77) 

When $’ % $, substitution of equations (18) 
and (43) into equation (77) yields 

(78) 

where Ra, = Gr . Pr (Rayleigh number for the 
centrifugal field). From equations (40) and (78) 
D is obtained as 

(79) 

whereb isobtained byusingequation (15)or (16). 
For Pr >, 1 ([ < l), 

D = 0.930 (36 - l)* (Ra, Re)* (80) 

where < > 0.364 as shown in Fig. 7. 

ForPr< l(c> 1). 

D = 1.330(( - 1 + i)t(Ra,Re)‘. (81) 

2.4. Resistance coeflcients and Nusselt mmbers 
Substitution of equations (80) and (81) into 

equations (58) and (59) gives A/i, and Nu/Nu, 
as follows : 

for Pr > 1: 

1 
- = 0.104 (31; - l)* (Ra, Re)* 
J-0 

Nu 
- ‘2 (31; - l)* (Ra, Re)* 

Nu,- r 

1 

’ 1 + [l/(lOcPr)] 

for Pr < 1: 

$=0.149(,- 1 +i)((Ra,Re)’ 

g=F@- 1 +i)t(Ra,Re)’ 

1 

’ 1 + [l/(lOY Pr)]’ 

(82) 

(83) 

(84) 

(85) 

In Fig. 9, the theoretical results given by 
equations (83) and (85) are shown by the solid 
straight lines. The curved line on the left in 
Fig. 9 is drawn from Morris’ analytical results 
[l] taking into account the terms of the second 
order of magnitude, but it shows the rapid 
divergence of the solution with increasing 
Ra, Re. 

2.5. The effect of Coriolis’force 
Effects of Coriolis’ force appear through the 

angle of deviation A in the present analysis. 
Considering that the line + = 0 is the line of 
symmetry in the flow field, we put it as follows 
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in equation (66) to obtain A: q 1, dP,dd+ 5nb J 
*=o, $‘= A. The angle is = - [[ Pr + 210:’ 

given by 

JD2 
From (79) and D is as 

sin = c J2oj8 + (Ra,Re/2Pr)’ 
(86) follows : 

When A is taken into account in obtaining the 
forPr > 1 

mean value, 
D = 0930 (31: - 1)” (Ra, Re)* 

Re 
--&A. 

40 
I 

1 - 0486 
(3C - 1)” J 

CCC pr (J5, + 21 VWW3 
(90) 

(87) 

By putting cos A z 1 and sin A x A in equation for Pr G 1 
(87) and using equation (86), the equation 
corresponding to equation (79) is written as D= l-330(,- l+$Ro,Re)’ 

25nb 

O5 + 3(Jq[[~r(J5)+ 21JD2 
1_ o_995 CC - 1 + U/301” J 

r[r or (J5) + 23 (Ra, RcT)~ (91) 

= F (Ra, Re). (88) Therefore, when the effect of Coriolis’ force 
cannot be disregarded, it is recommended to 

The second term of the left-hand side in equation multiply J/n, and Nu/NuO of equations (82-85) 
(88) is presumed to be small. by the correction coefficients which are cal- 

Therefore, we put culated from the terms closed in the brackets 

D = D, + D2 
in equations (90) and (91). The broken lines 
shown in Fig. 9 are Nu/Nu, including the effect 

where D1 is that given by equation (79). Assum- of Coriolis’ force, which is expressed by non- 
ing D1 % D2, we have from equation (88) dimensional parameter J. 

Ra, Re 
- Calculated curve 

---Calculated with Coriolis effect 

FIG. 9. Theoretical curves of Nu/Nu, vs. Ra,Re. 
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It is clear from equation (66) that the increase 
in A decreases the pressure gradient driving the 
secondary flow, so that the dimensionless 
velocity D of the secondary flow decreases as 
shown in equations (90) and (91). The increase 
in Coriolis’ force lessens flow resistance and 
heat-transfer rate as shown in Fig. 9. When we 
put the rotating velocity of the pipe axis 
Ho = a, the correction coefficients in equations 
(90) and (91) are proportional to ,*/a*. Keeping 
a constant, we can conclude that the effect of 
Coriolis’ force becomes large in a pipe with a 
small radius of rotation. 

CONCLUSIONS 

Fully developed laminar flow and tempera- 
ture fields in a straight pipe rotating about a 
parallel axis are analysed under a constant wall 
temperature gradient condition, and the follow- 
ing conclusive results are obtained. 

(1) In order to make the analytical results 
available for practical use, flow and tempera- 
ture fields can be analysed by assuming a 
secondary flow and dividing the fields into a 
core region, where the effect of the secondary 
flow is predominant, and a boundary layer 
along the wall. Since the momentum equation 
in the direction of the pipe axis and the energy 
equation do not explicitly contain the terms 
of body force, the relations obtained from them 
may generally be used between unknown quan- 
tities in the analysis of convective heat transfer 
in a pipe with a secondary flow generated by 
various body forces. 

(2)The specific relation for thepresentproblem 
is obtained from the momentum equation in 
the circumferential direction which expresses 
force balance between the body force in the 
strong centrifugal field and viscous resistance 
against the secondary flow at the pipe wall. 

(3) The resistance coefhcient ratio A/A,, (& = 
64/Re for Poisieulle profile) and the Nusselt 
number ratio Nu/Nu, (Nu, = 48/l 1 for constant 
temperature gradient) are obtained as the 
functions of Pr and Ra, Re. They are propor- 
tional to (Ra, Re)+ in the region of large values 
of Ra, Re, when the Coriolis’ effect is disregarded. 

(4) It is shown that the effect of Coriolis’ 
force appears through the nondimensional 
parameter J( = 2a20/v). 

The correction coefficients are given by taking 
into account this effect in the evaluation of 
A/L,, and Nu/Nu,,. When the circumferential 
velocity of the pipe axis is kept constant, the 
decrease in a radius of rotation increases the 
Coriolis’ effect, which lessens both the pressure 
drop and the heat-transfer rate. 
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R&mm& L.e transport de chaleur par convection forcee dam un tuyau rectiligne tournant autour dun 
axe parallele avec und grande vitesses angulaire a ttt ttudie en supposant un tcoulemcnt secondaire 
effectif di aux forces d’Arcbim&le. Les probltmes de transport de chaleur Ctudits ici se posent habituelle- 
ment lorsqu’on refroidit la gCntrateurs electriques ou d’autra machines toumantes. I_es champs d%coule- 
ment et de temperature sont analyses en les divisant en une r&ion centrale et uue couche limite mince le 
long de la paroi. L’analyse d’un Ccoulement laminaire entitlement Ctabli dans le cas d’un gradient de 
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temperature parietale constant consiste en deux parties. La premiere est une partie commune a de nombreux 
problknes avec Ccoulements secondaires et la deuxieme contient des points particuliers au problbme 
actuel. Les resultats montrent que le rapport des coefficients de resistance et celui des nombres de Nusselt 
aux valeurs de l’ecoulement de Poiseuille sont proportionnels a (Ra, Re)+; (Ra,: nombre de Rayleigh 
pour le champ centrifuge, Re: nombre de Reynolds). On ‘donne egalement les coefficients de correction 

dus a l’effet Coriolis. 

Z~assnmg-Es wurde der Wlrmeiibergang bei erzwtmgener Konvektion in einem geraden Rohr, 
das um eine parallele Achse mit grosser Winkelgeschwindigkeit rotiert unter der Annahme einer wirksamen 
Zweitstriimung info& des Auftriebs untersucht. Die bier betrachteten Wkmeiibergangsprobleme linden 
sich hliutig bei der Kiihlung elektrischer Generatoren oder anderer rotierender Maschinen. StrBmungs- 
und Temperaturfeld werden analysiert, indem man sie in eine Kernstriimung und eine dfinne Grenzschicht 
entlang der Wand unterteilt. Die Analyse der voll ausgebildeten Laminarstriimung bei konstantem 
Gradienten der Wandtemperatur wird bier in zwei Teilen behandelt. Der erste Teil gibt die lIlr verschiedene 
Probleme mit Zweitstriimung begrliuchliche Betrachtung der zweite Teil umfasst besonders Fragen des 
gegenwlrtigen Problems. Das Ergebnis zeigt, dass das Verhtitnis sowohl der Widerstandskoeflizienten 
als such der Nusselt-Zahlen zum Wet? der Poiseuille-Stromung proportional (Rq Rej) ist. (Ra,: Rayleigh- 
Zahl im Zentrifugalfeld, Re: Reynolds-Zahl). Korrekturkoeffizienten zur Beriicksichtigung des Coriolis- 

effektes sind angegeben. 

~OT8qruI-klCCJIe~OBaIi BbIHyPKReHIibI# KOHBeKTHBHbIi TennOO6MeK B IIpffMOfi Tpy6e, 
spamarometcrr ~O~pyr IIapaJIJIeJTbHOtt OCH C 6onbruoti yrJIOBOi CKOpOCTbIO B AOlIyIQeHElH 

3$l@eKTHBHOrO BTOpH=IHOrO TeYeHLiR BCJIeACTBIle IIOA'beMHbIX C&VI, 06yCJIOBneHHbIx rpa@ieH- 

TOM IIJI~THOCTII. II~M oxrram~erinri aneKTporeriepaTopor3 ri Apyrrix spamasomaxcfl Matturn 
06blliHOCTanKEIBaIOTCRC npO6neMaMKTenJIOO6MeHa,paCCmOTpeHHbIMIlB 3TOlCfCTaTbe.AHaJW 

3IIpylOTCH CKOpOCTHble EI TebllIepaTypHbIe IIOJIR IIyTeM pa3AeJleHUFI IIX Ha fWp0 IlOTOKa I? Ha 

TOHKK~ IIorpaHaYHbIti IIpHCTeHOIJHbIfi CJIOi. flee 'IBCTK 3TOrO aoKJIaJ(a CoAepHtaT aKanK3 

IIOJIHOCTbIO pa3BkiTOrO JIaMHHapHOrO IIOTOKa B yCJlOBIlHX llOCTORHHOr0 rpa,lWieHTa TeMOepa- 

TypbICTeHKELnepBaRqaCTb o6masAnn pa3JlH'SHbJX 3Wa9 C BTOpHYHbIMIi TeYeHKR,aBTOpaR. 

YaCTb CO$(epWiT 9aCTHble 3anawi. Pe3yJlbTaT lloKa3bIBaeT, 9TO OTHOlLIeHSiR Apyr K Rpyry 

KO3@@~KeHTOB COIlpOTUBJleHHFI, a TaKme wcen Hyccenbra B ycnosvlfix UyaaeltneBoro 

TeyeKKH nponopqKoHanbHn (Rar.Re)* (Rar, WiCJXO PeJIeR B lJeHTpObe%HOM none; Re, 
YKCJIO Pef'iHOJlAbCa). fiaIOTCJ? TaKH(e IIOIlpaBOYHbIe KO3$+iI(HeHTbl KOpHOJIHCOBOrO ?N#$eKTa. 


